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ABSTRACT 

A micromagnetic algorithm has been developed using the finite difference method (FDM). Elliptic field 

equations are solved on the mesh using the efficient Dynamic Alternating Direction Implicit method. 

Smooth surfaces have been included in the FDM formulation so structures of irregular shape can be 

modeled. The current distribution and temperature of devices are also calculated. 
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1. INTRODUCTION 

This paper describes the enhancement of a micromagnetics algorithm to include smooth surfaces, self- 

consistent currents, and temperature. Section II provides a summation of the additional techniques that have 

been implemented. A more detailed description of the initial code can be found in [ 11. Results for the 

smooth surfaces and self-consistent currents are investigated in the remainder of the paper. Section III 

presents the comparison of simulation with experimental results for micron and submicron size 

ferromagnetic particles. In section IV the impact of current distribution and temperature are shown for 

magnetic recording heads. In magnetic recording anisotropic magnetoresistive (AMR) and spin valve 

devices are usually simulated with somewhat idealized shapes and current distributions. As recording 

density increases with its accompanying decrease in reader dimensions, modeling of the actual reader 

geometry with temperature effects becomes more important. 

II. MICROMAGNETIC ALGORITHM 

In this code structures of various shapes are defined on a nonuniform, Cartesian mesh. The 

magnetization is advanced using the Landau-Lifshitz-Gilbert dynamic equation [ 11. Each structure is given 

material properties that are stored on the mesh nodes contained within the structure. The micromagnetic 
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quantities include all three components of the magnetization, M, the saturation magnetization, M,, the 

exchange constant, A, the crystalline anisotropy constant, K, the anisotropy direction, k , the linear 

interlayer coupling constant, A,,, the biquadratic interlayer coupling constant, B,,, and an 

anitiferromagnetic (AFM) pinning strength, HP;“. The effective field is given by 

He* = ( 1) 

Here cDM is magnetostatic potential, and H,,, is the field induced by currents. 

Structures either have a magnetization, M, or a linear permeability, p. The potential is calculated at the 

mesh nodes from the finite difference equivalent of the equation 

V$V@)=47tV.M. ( 2) 

On a Cartesian mesh iterative matrix solution techniques involving tridiagonal splittings of the matrix can 

still be used to solve this elliptic equation. With this formulation the efficient Dynamic Alternating 

Direction Implicit (DADI) method [I] is used to solve the matrix. The magnetostatic field, Hmag, is given 

by the gradient of the potential 

H w =-va. ( 3) 

II. 1 Currents and temperature 

The current induced field is found from the current density, the vector potential, and Ampere’s law[ 11. The 

current density, J, can be defined as a constant in structures or calculated from the structure conductivities, 

0. In the latter case the electrostatic potential, ae, is found from 

v+vcp,)=o. ( 4) 

The current density is given by Ohm’s law 

J=-oV@,. ( 5) 

The ends of the leads for conducting devices are given a Dirichlet boundary condition for the 

electrostatic potential. Insulating regions in the simulation are set at zero potential. At the interface between 

conducting and insulating materials a Neumann zero boundary condition is imposed on the potential 
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causing current to be parallel lo the interface. The total current for a device may be specified. In this case 

the code calculates the total current crossing a planar surface defined by the user. The potential across the 

device is then scaled to provide the correct current. 

The resistivity, p, of AMR and giant magnetoresistive (GMR) structures is allowed to change depending 

on the local magnetization configuration. AMR depends on the angle, 8,, between J and M. 

P(X)= P, +A~cos~@o(x)) ( 6) 

GMR depends on the angle, 8,, between the pinned and free layers. 

P(X)= P, +A~,b-c43, (x))b (7) 

The magnitude of Ap/p is obtained from experimental results for particular AMR and GMR sheet films. 

The temperature is solved using the heat equation and the previously calculated current density. 

V(KVT)= -pJ2 (8) 

The thermal conductivity is defined on the mesh according to the structure locations. The pinning of AI?M 

pinned layers and the interlayer coupling for multilayered films are allowed to vary with temperature based 

on input files of experimental data. The local p and Ap are given a linear temperature dependence with the 

proportionality constant set by experimental data. 

p(Q)= p(ZXl+olT) (9) 

With the temperature dependence of the resistance there is a feedback in the heating [2]. The following 

algorithm is implemented for each applied magnetic field value. 1) Apply the external magnetic field and 

iterate the micromagnetic system to equilibrium. 2) Calculate the resistivities given the magnetization 

configuration and temperature. 3) Apply a voltage across the leads. 4) Calculate the potential. 5) Calculate 

the current densities. 6) Calculate the current across a defined surface. 7) Scale the voltage to get the 

desired current in the device. 8) Calculate the temperature using the current density. 9) If the change in the 

temperature or voltage is greater than a user defined error criteria, return to step (1). 11) Apply the next 

value of the external field. 

11.2 Embedded curved boundary method in micromagnetics 

In this section we describe how the Embedded Curve Boundary (ECB) method [3] is implemented on 

the orthogonal, non-uniform mesh. With such a mesh object surfaces are usually constrained to the mesh 
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nodes resulting in “stair step” boundaries. In constrast the ECB method allows the use of a structured mesh 

but includes smooth curved boundaries by changing the finite difference equations in prescribed ways. The 

application of the ECB method can improve simulation results without increasing computational 

requirements. 

Specifically, second order finite differencing of the magnetostatic field equation at node (i, j, k) 

(corresponding to (x, y, z) ) gives: 

~+ :,- [$+ -[$+-qu +$D-I+... 
=4~ M+x- +M,D(Ax+ -Ax-)-&Ax+ 

[ + . . . 
2Ax-Ax+ I 

( 10) 

where 

AX* $ x(i) - x(i f 1) I is the discretization of the mesh. 

a* = CD@+ 1, j, k]X Q” = @(i, j, k) is the magnetostatic potential. 

MI =M,(irtl, j,k),Mf =M.(i, j,k)is thex-component of M . 

pi =.S(p(i, j,k)+/.t(ifl, j,k) is the average linear permeability . 

\ . . . ’ refers to the differencing in the y and z directions. 

Eq. (10) implicitly assumes there are no surfaces between node (i, j, k) and any of its six closest 

neighbors. The ECB method adjusts the coefficients in the finite difference equation for a boundary located 

between the mesh nodes. Consider a simple surface between a magnetic structure with magnetic moment 

(Region 1) and empty space (Region 2) with p = 1 as shown in Fig. I. The basic boundary conditions for 

the magnetic fields, assuming no surface currents, can be manipulated to give: 

H c2) -H (I) = 47tM x x surface *nn* = (5 mag (11) 

where the superscripts refer to the region. H, is the x-component of the magnetostatic field. MSUtiaW is the 

magnetization at the surface. The surface normal ( n = n,x + n,y + n,z ) is the unit surface normal from 

Region 1 to 2 at the point where the boundary intersects the line connecting node (i, j, k) to node 
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(i + 1, j,k) . The magnetic potential at the surface, a* , IS obtained by taking a first order difference of the 

potential on each side of the surface. The result from Eq. (11) is 

CD’ = b(Ax+ -l+,,, +scD++(Ax+-G)az”]lAx+ ( 12) 

where 6 is the distance from the position (i, j, k) to the position where the surface intersects the line 

connecting nodes (i, j, k) and (i + 1, j, k) . Eq. (10) can now be modified by differencing from the surface 

position instead of the node position, (i + 1, j, k) . In other words 0’ is replaced with Q* , Ax+ is replaced 

with 6 , and M ,’ is replaced with M xsurlace (the x-component of M surlace ). The modification is completed 

by substituting Eq. (12) for @* Rearranging terms gives 

*[--&o+ -(-&+-J-a9 +-&D-I+... 

[ 
M 

=47c 
xsurfaceAx- +M$ -Ax-)-M-F x 1 &+ -OLag 

2Ax-6 +*-- -m 

The y and z components remain unchanged. A similar equation can be derived for node (i + 1, j, k) in 

( 13) 

Region 2. 

Constant potential or Dirichet boundary conditions may be imposed. For the case where region 2 is a 

structure of constant potential, a,’ is replaced with the constant potential, QD. Eq. (10) becomes: 

&[-(++&IDo +-.&CD-]+... 
( 14) 

M 
= 4lt xsurrac&- +M% - Ax-)-M;6 

2Ax-6 
+... -~-$f& 

I 

Once again, the y and z components have not changed, and the right hand side has been changed to include 

the Dirichlet boundary value. 

The preceding description is the general procedure for ECB to adjust the finite difference equations. 

Note that the derived coefficients continue to link only nearest neighbor mesh points in the finite difference 

template. Iterative matrix solution techniques involving tridiagonal splittings of the matrix can still be used 

to solve this elliptic equation. There remain three outstanding issues with this formulation. First, the 

derivation of Eq. (1 I), assumed no surface currents. As stated in the previous section, a separate al.gorithm 
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[I] is used to find the current induced fields. The fields are then superimposed along with the other 

contributions to the effective magnetic field. 

Second, and more important, the linear permeability of the non-magnetic structure was assumed to be 

unity. If l.t is one or the surface normal lies along one of the coordinate axes, Eq. 4 is correct. In the later 

case the multiplication of Hy' b y /.I corrects Eq. (4). If the previous conditions are not met, Eq. 4 then has 

cross terms involving H,, Hz, and p. While this is not fatal to the algorithm, it does mean that a simple 

tridiagonal matrix for each dimension is destroyed, and DAD1 cannot be employed to find Cp. A later article 

will be published explaining the steps required to retrieve a tridiagonal system for arbitrary boundaries with 

permeabilities. 

The third and final issue to be addressed is how to find the magnetic moment, M,,fiscf,,, , at the surface 

since, in general, there is no node there. According to micromagnetic theory [4], 

aM 
an=O ( 15) 

Numerically, this constraint is imposed by projecting back along the surface normal into the structure a 

distance 26 and linearly interpolating to find a value Minlerpolate as in Fig. 1. The linear interpolation is 

taken from the surrounding mesh points. The finite difference form of Eq. (15) becomes 

M sutiace - M interjwlore = o 

26 ( 16) 

M sUrlace is simply the interpolated value. The finite difference equations have now been altered to allow for 

curved boundaries. M surface is also used in the exchange, V*M, term of Eq. (1). Each node can have up to 

six surfaces surrounding it. The coefficients are changed according to the above prescription depending on 

whether nodes are located inside or adjacent to structures. 

III. SUBMICRON-SCALE CO DOTS 

Micromagnetic simulations were used to simulate the magnetic response of polycrystalline Co elliptical 

dots of varying thickness (I 60-400 A). The dots have major and minor axes of 450 nm and 250 nm, 

respectively. The crystalline anisotropy is assumed to be random in the xy plane with coefficient 
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K = 7.5~10~ erg/cc. The grain size is approximately 60 A, and A = l.6x10”erg/cm2. Detailed 

experimental procedures and results can be found in [5]. 

Fig. 2 shows the calculated and measured coercivity of the dots in the easy direction for different 

thickness. The magnetic moment is not known precisely, but measurement indicates an effective moment 

with a lower bound of I160 emu/cc which is less than the bulk value of 1450 emu/cc. Simulations were 

done with M, of 1450 and I 160 emu/cc. Simulations using ECB were compared to simulations using stair 

stepped boundaries on the same computational mesh. Several simulation points are shown for each 

thickness. The different points result from different random distributions for the grain anisotropy directions. 

ECB and stair stepped boundaries give similar coercivity results for each value of M,. The simulations with 

the lower M, are in closer agreement with experiment. 

Differences are more evident in the magnetization configurations. Experimental results suggest a single 

vortex state exists during switching 97% of the time for all thickness’. This state is evident in MFM images 

of the dots[5]. In the simulations different magnetization configurations occurred for different 

initializations of the grain anisotropy distribution. The stair step simulations produced a single vortex state 

only for the thinnest structures. All other thickness exhibited very complex magnetization patterns. On the 

other hand, the ECB method produced single vortex states at all thickness’. A few double vortex states 

occurred at the intermediate thickness. In Fig. 3, the hysteresis loops from experiment for 160 A (thick line) 

and 400 A (thin line) dot are shown. The ECB simulations results are given as squares for the 160 A dots 

and triangles for the 400 A dots. The simulation curves are averaged over all simulations that exhibited a 

single vortex. The ECB method provides a very close fit to experiment for the coercivity and denucleation. 

Some error is evident in the nucleation field of the vortex. Nucleation has been seen to be dependent on the 

coupling between grains which is not known precisely. As a whole these results indicate that the ECB 

method can simulate particles of various shapes with good accuracy. 

IV. GMR Read Heads 

This section presents the results of an example read head simulation to demonstrate the ability of the 

code to include the combined effects of current and temperature on a read head. A dual spin valve [6] was 

modeled to minimize the effect of the current induced field on the magnetic response of the head. The 

GMR layers are IAFM 5OAlCoFe 2OAKu 25Alfree layer 5OAKu 25AKoFe 2OAlAFM 5OAl. The free 
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layer Mst is 0.5 memu/cm2. The physical track width is 0.5 l.trn with a stripe height of 0.4 l.trn. device was 

given a sheet resistance of 15 sz/sq and a GMR response of 10%. The shield to shield gap is 0.13 l.trn. 

The antiferromagnetic (AFM) pinning layers were given a temperature dependence similar to the IrMn 

in Fuke, et al [7]. The AFM pinning is 600 Oe at room temperature and is zero at the blocking temperature 

of 260°C. The response of the device is shown for a media having an Mrt of 0.5 memu/cm* and a total 

magnetic spacing of 500 A. For this device the temperature coefficient, tar, for p was set to 0.1 %PC, and 

the temperature coefficient, ~(2, for Ap was set to -0.2%X. The thermal conductivity of insulating 

materials was 1 .O WPC-m, and the thermal conductivity of the other materials was 35 WPC-m. 

In the simulations the ambient temperature was set at 50°C as an approximation to the elevated 

temperature in a hard drive. Figure 4 is a contour plot of the temperature in the free layer for 6 mA of sense 

current. Superimposed on the contours are the magnetization vectors. Note that the pinned layers of the 

dual spin valve tend to bias the free layer magnetization downward. As expected the temperature is a 

maximum at the center of the stripe (100°C) and a minimum at the junction with the leads (67°C). The 

temperature falls off at the top of the stripe as heat conducts through the gap materials. The temperature 

remains uniform at the insulating air bearing surface (ABS). 

As the current in increased the temperature of the GMR stripe increases at nearly a quadratic rate [8]. 

The average temperature of the device is shown in Fig. 5. This increase in temperature affects both Ap of 

the GMR and the pinning of the AFM layer. Fig. 6 shows the peak-to-peak response of the device as the 

current is increased. Curve a) is the response without temperature effects. It is almost linear with current. 

Curve b) simulations included the change in Ap with temperature. Curve c) is the product of curve a) and 

(1 +cr,T(I)) where 7’(r> is taken from Fig. 5. The combined simulation, curve b), has a response that is 

slightly better than the approximation of curve c). With the inclusion of pinning temperature dependence 

the response drops further as shown in curve d). The response of the case d) is % lower than the response 

where heating is neglected. 

V. Conclusion 

The combination of smooth surfaces, current distributions, and heating effects in a micromagnetics 

algorithm provides the capability to model magnetic particles, read heads, etc. with realistic shapes and 
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under actual operating conditions. The algorithm is formulated in a way that allows the use of the finite 

difference method and efficient matrix solution techniques. The additional capability of this micromagnetic 

algorithm will lead to helpful insights on the operation of high density, recording heads. 
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FIGURES . 

1. Geometric definitions for the embedded curved boundary (ECB) method at surfaces. 

2. Easy axis coercivity for dots of various thickness. 

3. Magnetization in the easy direction for simulation (symbols) and experiment (lines). 

4. Temperature contours in the free layer and magnetization configuration at 6 mA. The temperature is 

67°C at the edges and 100°C in the center. 

5. Temperature as a function of current in the dual spin valve. 

6. Response of the dual spin valve as a function of current: a) no temperature effects, b) Ap affected by 

temperature, c) curve a) multiplied by (1 +(x*T(I)), and d) both Ap and Hpin affected by temperature. 
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Figure 1: Geometric definitions for the embedded curved boundary (ECB) method at surfaces. 
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Figure 2: Easy axis coercivity for dots of various thickness. 
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Figure 3: Magnetization in the easy direction for simulation (symbols) and experiment (lines). 

Figure 4: Temperature contours in the free layer and magnetization configuration at 6 mA. The temperature 
is 67’C at the edges and 100°C in the center. 
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